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Abstract. The supercurrent through an Aharonov-Bohm interferometer containing two parallel quantum
dots connected with two superconductor leads is investigated theoretically. The possibility of controlling
the supercurrent is explored by tuning the quantum dot energy levels and the total magnetic flux. By
tuning the energy levels, both quantum dots can be in the on-resonance or off-resonance states, and thus
the optimal modulation of the supercurrent can be achieved. The supercurrent sign does not change by
simply varying the quantum dot energy levels. However, by tuning the magnetic flux, the supercurrent can
oscillate from positive to negative, which results in the π-junction transition.

PACS. 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions – 73.23.-b Electronic transport
in mesoscopic systems – 73.63.Kv Quantum dots

1 Introduction

Recent advances in nanotechnology have attracted much
attention to the quantum coherence phenomena in the res-
onant tunneling processes of the quantum dot (QD) sys-
tems in which electron can keep phase coherence [1]. In
the past decade, one of the adopted methods to study
the phase coherence of an electron through a QD was to
measure the current versus the magnetic fluxes through
an Aharonov-Bohm (AB) interferometer with one QD in
one of its arms [2]. The observed magnetic oscillation
of the current indicates coherent transport through the
QD [3–8]. Recently, an open parallel double quantum dot
(DQD) threaded by a magnetic flux has been realized
in experiments, where the coherence of the electron re-
mains [1,9,10]. As a controllable two-level system, the
parallel DQD system becomes one of the promising candi-
dates as a quantum bit in quantum computation based on
solid-state devices [11–13]. On the other hand, the super-
conductor coupled mesoscopic hybrid systems have also
attracted much attention in recent years because of both
fundamental interest and potential applications for future
nanoelectronics [14–17]. The Andreev reflection happens
at the normal-metal/superconductor (N/S) interface [18],
in which an incoming electron from normal side is reflected
as a hole and a Cooper pair is transferred into the super-
conducting condensate.

One of the most intriguing experimental results on
mesoscopic superconductivity is how to control the su-
percurrent through a S/QD/S Josephson junction [19].
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Recently, the supercurrent flowing through the quantized
single particle energy states of a quantum dot has been ob-
served experimentally [20]. More recently, a superconduct-
ing quantum interference device with two QDs in its arms
has been realized [22], where the two QD energy levels can
be controlled by two lateral electrostatic gates. Thus the
two QDs can be tuned in the on-resonance or off-resonance
states by means of the gate voltages. The Josephson cur-
rent through a double quantum dot system in the Kondo
regime has also been studied theoretically [21], and the
results show that the supercurrent depend distinctly on
the ratio of the coupling strength between the double
dots and the one between the dots and the leads. Mo-
tivated by these, tt is natural to ask if the DQD systems
could have some novel phenomena associated with the su-
percurrent by tuning the two QD energy levels and the
magnetic flux. In the work, we investigate how to control
the supercurrent in a parallel DQD system by using the
magnetic flux and the gate voltages. The scheme of the
system is plotted in Figure 1. The device with the two
quantum dots can be regarded as an AB interferometer
threaded by magnetic fluxes. By using the nonequilibrium
Green’s function (NGF) techniques [23–25], we have ana-
lyzed quantum transport properties of the S/DQD/S sys-
tem, which has some novel resonant features. The mag-
nitude of the supercurrent can be controlled by tuning
QD energy levels, which can lead to the on-resonance or
off-resonance states of each QD. The sign of the super-
current does not change by simply varying the QD energy
levels. However, by tuning the magnetic fluxes, the super-
current can oscillate from positive to negative. Whether
the sign of the supercurrent changes depends not only on
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Fig. 1. Schematic diagram for a parallel DQD system con-
nected with two superconducting leads.

the magnetic flux but also on QD energy levels. There-
fore, the typical Josephson relation between the super-
current and the macroscopic phase difference between the
superconductors usually given by I = Ic sin ϕ changes to
I = −Ic sin ϕ = Ic sin(ϕ + π) (Ic is the critical current).
The reverse sign of the supercurrent is referred to as the
π-junction transition.

The rest of this paper is organized as follows. In Sec-
tion 2 we present the model and derive the formula of the
the current I by using the NGF technique. In Section 3
The control of the supercurrent with the magnetic fluxes
and the dot energy levels are discussed in detail. Finally,
a brief summary is given in Section 4.

2 Physical model and formula

The S/DQD/S system under consideration can be de-
scribed by the following Hamiltonian

H =
∑

α=L,R

Hα + HD + HT . (1)

The Hα (α = L/R) is the standard BCS Hamiltonian for
the superconducting leads with the superconducting phase
ϕα and the energy gap ∆,

Hα =
∑
k,σ

εα,ka†
α,kσaα,kσ +

∑
k

[∆e−iϕαa†
α,k↑a

†
α,−k↓ +H.c.],

(2)
where a†

α,kσ (aα,kσ) is the creation (annihilation) opera-
tors of the electron in the αth lead with energy εα,k. The
chemical potential of the left and right leads are set as
µL = µR = 0. HD models the parallel double quantum
dots as

HD =
∑

σ,i=1,2

(εi − Vgi)d
†
iσdiσ , (3)

where d†iσ (diσ) represents the creation (annihilation) op-
erator of the electron with energy εi in the dot i (i = 1, 2).
The energy levels in the dots are measured from the Fermi

energy (EF = 0) of the DQD system. HT , which repre-
sents the tunneling coupling between the DQD and leads,
can be expressed as

HT =
∑

α,kσ,i=1,2

(tαia
†
α,kσdiσ + H.c.), (4)

where the tunneling matrix element tL1 = |tL1|eiφ/4,
tL2 = |tL2|e−iφ/4, tR1 = |tR1|e−iφ/4, and tR2 = |tR2|eiφ/4.
The phase due to the total magnetic flux threading into
the AB ring is assumed to be 2πφ/φ0 with the flux quan-
tum φ0 = hc/e.

The supercurrent can be calculated from standard
NGF techniques, and can be expressed in terms of the
dots Green functions as

Iα(t) =
2e

�
Re

∫
dt1Tr{σ̂z[G<(t, t1)Σa

α(t1, t)

+ Gr(t, t1)Σ<
α (t1, t)]}, (5)

where σ̂z is a 4×4 matrix with Pauli matrix σz as its diag-
onal components. The 4×4 Nambu representation is used
to include the physics of Andreev reflection. The retarded
and lesser Green’s function are defined as Gr(t, t′) =
−iθ(t − t′)〈{Ψ(t), Ψ †(t′)}〉 and G<(t, t′) = i〈Ψ †(t′)Ψ(t)〉,
respectively, with the operator Ψ = (d†1↑, d1↓, d

†
2↓, d2↑)†.

Let gr(ε) and Gr(ε) denote the Fourier-transformed re-
tarded Green’s function of the QD without and with the
coupling to the leads. In the Nambu representation, gr(ε)
can be written as

[gr(ε)]−1 =
⎛
⎜⎝

ε − ε1 + i0+ 0 0 0
0 ε + ε1 + i0+ 0 0
0 0 ε − ε2 + i0+ 0
0 0 0 ε + ε2 + i0+

⎞
⎟⎠.

(6)

The retarded self-energy under the wide-bandwidth ap-
proximation is derived as

see equation (7) above.

where φL = −φR = φ, and Γ α
i (i = 1, 2) is the linewidth

function describing the coupling between the dot and the
αth superconducting lead. Under the wide-bandwidth ap-
proximation, the linewidth functions are independent on
the energy variable. Furthermore, we set ϕL = −ϕR =
ϕ/2 for the symmetric case. The factor ρ(ε) in the self
energies is defined as

ρ(ε) =

⎧⎨
⎩

|ε|√
(ε2−∆2)

|ε| > ∆
ε

i
√

(∆2−ε2)
|ε| < ∆.

(8)
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Fig. 2. Supercurrent I(ϕ = π/2) vs. gate voltage Vg at φ = 0
for various dot levels ε1 = ε2 = 0 (solid line), ε1 = 0.2, ε2 =
−0.2 (dashed line), and ε1 = 0.1, ε2 = −0.3 (dotted line).

By using the Dyson equation, the retarded Green function
of the system can be obtained as

Gr(ε) =
1

[gr(ε)]−1 − Σr(ε)
, (9)

where Σr = Σr
L + Σr

R. After taking the Fourier transfor-
mation, the current formula becomes

Iα =
2e

�

∫
dε

2π
Tr{σ̂zRe[G<(ε)Σa

α(ε) + Gr(ε)Σ<
α (ε]},

(10)
in the steady transport, the current is given by the follow-
ing expressions

I =
1
2
(IL − IR) =

e

�

∫
dε

2π
Tr{σ̂zRe[G(ΣL − ΣR)]<}.

(11)
Applying the fluctuation-dissipation theorem, one has

G<(ε)=f(ε)(Ga(ε)−Gr(ε)), Σ<
L/R=f(ε)(Σa

L/R −Σr
L/R),
(12)

where f(ε) = 1/(eε/kBT +1) is the Fermi distribution func-
tion. Consequently, the Josephson current is expressed as

I =
e

�

∫
dε

2π
f(ε)Tr{σ̂zRe[Ga(Σa

L − Σa
R)

− Gr(Σr
L − Σr

R)]}. (13)

The supercurrent originates from Andreev reflection at the
interface between the superconducting leads and the cen-
tral region. In the following section, the numerical results
of the supercurrent and its dependence on the dot energy
levels, magnetic flux, and the gate voltage are discussed
in detail. We perform the calculations at zero temperature
in units of � = e = 1. The energy gap of the supercon-
ductor is fixed as ∆ = 1. All the energy quantities in the
calculations are scaled by ∆.

Fig. 3. The images of supercurrent I(ϕ = π/2) as a function
of the dots levels ε1 and ε2 with (a) φ = 0 and (b) φ = π.

3 Numerical results and discussions

For simplicity, we set Γ L
1 = Γ L

2 = Γ R
1 = Γ R

2 = Γ with
small values 0.05 for the symmetric and weak-coupling
case. The gate voltage Vg dependence of the supercur-
rent I(ϕ = π/2) with various quantum dot energy lev-
els (ε1, ε2) is shown in Figure 2. For the case of (0, 0),
there is only one current peak associated to the energy
level ε1 = ε2 of the DQD. For the cases of (0.2,−0.2)
and (0.1,−0.3), there are two current peaks associated to
the two different energy levels ε1 or ε2 of the DQD, re-
spectively. When the level εi is aligned with the Fermi
energy, the supercurrent can flow by resonant tunnelling
through the ith QD. When εi is far from the Fermi energy,
the supercurrent is strongly reduced. The positions of the
two peaks are symmetrical about the Fermi energy for
(0.2,−0.2), but they are not symmetrical for (0.1,−0.3).
The height of the current peak for (0, 0) is about two times
large as those for (0.2,−0.2) and (0.1,−0.3), since the two
energy levels with the same values both contribute to the
supercurrent.

The positions of the energy levels ε1 and ε2 can be
tuned by the gate voltages. Figure 3 shows the images
of the supercurrent I(ϕ = π/2) as a function of ε1 and
ε2. The bright regions correspond to positive current and
the black regions to negative current. At zero magnetic
flux φ = 0, tuning the levels of the dots influences the the
magnitude of the supercurrent significantly, but leaves the
current sign unchanged. The current is symmetrical about
the line of ε1 = ε2 and ε1 = −ε2 in the diagram. Our re-
sults agree well with those obtained in the experiment [22].
There are three cases for I versus ε1 and ε2 as discussed
in the experiment. In case I, the both QD energy levels
are aligned to the Fermi energy (on-resonance) and maxi-
mal supercurrent can flow through the device. In cases II
and III, one and two of the QD energy levels are tuned
away from the Fermi energy (off-resonance), respectively.
When ε1 = ε2 = 0 as in case I, the supercurrent has a
maximum value, since both QD are in the on-resonance
states. When only ε1 = 0 or ε2 = 0 as in case II, the
supercurrent is two times smaller as in case I, since one
QD is in the on-resonance state and the other is in the
off-resonance state. When both ε1 and ε2 are away from
0 as in case III, the supercurrent is very small, sine both
QDs are in the off-resonance states. At nonzero magnetic
flux φ = π, the supercurrent becomes negative. Some sim-
ilar “anticrossing” occurs at ε1 = ε2 in the diagram of
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Fig. 4. The periodic oscillation of the supercurrent I(ϕ = π/2)
vs. the magnetic flux φ for dot levels ε1 = 0, ε2 = 0 (solid line),
ε1 = 0.2, ε2 = −0.2 (dashed line), and ε1 = 0.1, ε2 = −0.3
(dotted line).

supercurrent. The QDs can be used as magnetic flux-
controlled π-junctions, that is, the sign of the current-
phase relation across the quantum dtos can be tuned with
a magnetic flux.

We now discuss the AB oscillations of the supercur-
rent as a function of magnetic flux. In the hybrid system,
the interfere channel paths contain two parts due to the
Andreev reflection. One is the incident electron from the
left superconductor lead to the right one, the other is the
reflecting hole from the right superconductor lead to the
left one. This leads to AB oscillations for the supercurrent.
Figure 4 presents the dependence of the I(ϕ = π/2) on
the magnetic flux φ for various dots energy levels (ε1, ε2).
The energy levels of the DQD has a distinct influence on
both the magnitude and the sign of supercurrent. The os-
cillation period of the supercurrent versus magnetic flux is
2π. Although the supercurrent for (0, 0) oscillates with φ,
it is always positive and does not change its sign. While
for the cases of (0.2,−0.2) and (0.1,−0.3), not only the
magnitude but also the sign oscillates with φ. The super-
current sign changes from positive to negative, which is
quite different from that for (0, 0). At φ = 0, the super-
current for (0, 0) is much larger than that for (0.2,−0.2)
and (0.1,−0.3), since both quantum dots are in the on-
resonance states. Compared with the results for the cou-
pled two quantum dots in the Knodo regime [21], it is
found that tuning the coupling strength only changes the
amplitude of the supercurrent but leaves the sign of the su-
percurrent unchanged. However, both the amplitude and
the sign of the supercurrent can be changed by tuning
the magnetic flux. This characteristic transport features
can be easily manipulated by applied gate voltages and
magnetic flux.

The magnetic flux φ has an important influence not
only on the magnitude but also on the sign of the super-
current. As can be seen from Figure 5, the supercurrent I
versus ϕ at φ = 0 (solid line) and φ = π (dashed line) are
quite different. For the case of (0, 0), I oscillate with in-
creasing ϕ and the period is 2π at φ = 0, while I is always
zero with increasing ϕ at φ = π. For the case of (0.1,−0.3),

Fig. 5. The periodic oscillation of the supercurrent I vs. su-
perconducting phase ϕ for dot levels (a) ε1 = 0, ε2 = 0, and
(b) ε1 = 0.1, ε2 = −0.3 at φ = 0 (solid line) and φ = π (dashed
line).

Fig. 6. The images of supercurrent I as a function of the
superconducting phase ϕ and magnetic flux φ for dot levels
(a) ε1 = 0, ε2 = 0, and (b) ε1 = 0.1, ε2 = −0.3.

the period of I with ϕ is 2π at both φ = 0 and φ = π. The
current-phase relation is a I = Ic sin(ϕ)-like function when
there is no magnetic fluxes. However, the current sign is
changed from positive to negative by the magnetic flux
φ = π. The negative sign can be absorbed into the phase
factor as sin(ϕ+π), which is referred to as the π-junction
transition. The π-junction transition is confirmed by the
phase shift between the oscillations for I versus ϕ at φ = 0
(solid line) and at φ = π (dashed line). In Figure 6, the
images of the supercurrent I versus the superconducting
phase ϕ and magnetic flux φ are plotted. The supercon-
ducting phase ϕ and the magnetic phase φ together can
lead a complex picture for the supercurrent. Compared
these results with those in the recent experiment [22], the
image of the supercurrent shows similar behaviors, since
the AB interference can make the supercurrent amplitude
oscillate from large to small value just as the QD changes
from the on-resonance to the off-resonance state. Further-
more, tuning ϕ and φ changes not only the the magnitude
but also the sign of the supercurrent. The bright regions
correspond to positive current and the dark regions to
negative current. The periods of supercurrent versus φ or
ϕ are both 2π. This opens a way to control not only the
magnitude and sign of the supercurrent.

4 Summary

In summary, we have studied the tunable supercurrent
through an AB interferometer containing two parallel
quantum dots in terms of the nonequilibrium Green’s
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function method. Several ways to control the supercurrent
are proposed, including the quantum dot energy levels ε1

and ε2 and the total magnetic flux φ treading the ring.
By tuning the energy levels, both quantum dots can be
in the on-resonance or off-resonance states, and thus the
optimal modulation of the supercurrent can be achieved.
The sign of the supercurrent does not change by simply
varying the quantum dot energy levels ε1 and ε2. However,
the supercurrent can oscillate from positive to negative by
tuning the magnetic flux when ε1 and ε2 are at different
sides of the Fermi energy, which results in the π-junction
transition. It means that whether the oscillations can re-
verse the supercurrent depends distinctly on the quantum
dot energy levels. Therefore, transport signals can be ma-
nipulated by adjusting the quantum dot energy levels and
the magnetic fluxes together.

This project was supported by NSFC under Grants No.
10547102.
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